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ABSTRACT

The long time behavior of the solutions of nonlinear parabolic initial

value problems on the line has been investigated by many authors. In

particular they have shown, under certain assumptions, the existence of

traveling waves to which a large class of initial data eventually evolves.

They have also proved that which traveling wave solution is picked out as the

asymptotic state often depends on the behavior of the initial data at

infinity. This causes difficulties for the numerical simulation of the long

*" time evolution of such problems. In particular, if an artificial boundary is

introduced, the boundary condition imposed there must depend on the initial

data in the discarded region. In this work we deriv" such boundary

conditions, based on the Laplace transform solution of the linearized problems
at . W illustrate their utility by presenting a numerical solution of

Fisher's equation, a nonlinear parabolic equation with traveling wave

solutions which has been proposed as a model in genetics.
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SIGNIFICANCE AND EXPLANATION

Nonlinear partial differential equations of parabolic type arise in

various applications. Examples include models of chemical kinetics and

* population dynamics. In many cases it is the evolution of the initial data

* into some simple final state which is of interest. For a class of initial

.5 ~ value problems on the line, other authors have shown that the final state is

usually a traveling wave and is determined by the initial data at infinity.

In this work we present a method for the numerical simulation of this

evolution.

As a finite domain is required for the numerical method, it is necessary

to introduce artificial boundaries. The boundary conditions imposed there

*' .*must depend on the initial data in the discarded regions if the correct long

time solution is to be found. We construct such conditions using the Laplace

transform solution of the linearized problems at ±-. Their utility is

illustrated by the solution of Fisher's equation, a model of the spatial

advance of an advantageous gene. It is hoped that this method will give

reliable results when applied to problems whose final state is not known
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THE NUMERICAL CALCULATION OF TRAVELING WAVE SOLUTIONS
OF NONLINEAR PARABOLIC EQUATIONS ON THE LINE

Thomas Hagstrom and H. B. Keller*

4, 1 INTRODUCTION

We consider the numerical solution of the Cauchy problem for a class of nonlinear

parabolic equationsi

a) ut = f(uxx,ux,u), - 4 x 4 -, t ) 0

b) lim u(xt) = *+, lim u(x,t) *. .

(1.1) x+" x+ 
-

c) u(x,0) - u0 (x) I

d) f(a,b,c) ;0 1 for all a,b,c

* We assume that *j satisfy:

4. f(0,0,4± 0

(1.2)
f u(0'0's+) 0,

and that the initial data, u0 (x), satisfies (1.1b). In particular, we are interested in

simulating the evolution of the initial data into traveling waves.

Hagan (3,4] has presented an extensive analysis of problem (1.1). We paraphrase some

of his results below:

(i) Nonmonotonic waves are unstable in general.

(ii) The stability of monotonic waves of speed c can, in general, be determined by

an examination of their trajectories in the phase plane of:

(1.3)
f(v',v,w) + cv = 0

(iii) If traveling waves exist, a large class of initial data satisfying (1.1b) will

evolve to a traveling wave.

*Department of Applied mathematics, California Institute of Technology, Pasadena, CA 91125

Spontored by the United States Army under Contract No. DAAG29-80-C-0041.

vN.

. '

. . . , , , . . . . . . . . . . . . ... .. .. . . • . .•. .** , . .' 0 ., I %4 ,- " . _. . J . */*.#* . . .. - . -,*
.

- . - . -. -. . . . . . . . . . . . - .



(iv) In certain situations, infinitely many wavespeeds, c, are allowed. In this

case, the traveling wave which is eventually seen depends on the behavior of the initial

data at infinity.

The numerical solution of (1.1) requires a finite computational domain. One way to

obtain such a domain is to introduce artificial boundaries at the points

X=± T + > T_, and impose boundary conditions there. The derivation of proper

boundary conditions is the main subject of this work. A general theory of boundary

conditioh- at an artificial boundary is given by the authors in [6]. This theory is not

directly applicable to time dependent problems in unbounded spatial domians such as

(1.1). However, a Laplace transformation in time yields a problem of the right form. In

*conditions in the real variables.

We note that use of the proper boundary condition6 Is crucial whenever (iv) holds.

Then, the "naive" conditions:

u(T+,t) -

(1.4)
U(T_,t) = _

must, in general, fail to lead to the correct long time solution.

In section 3 a specific problem of the form (1.1) is introduced: the Cauchy problem

for Fisher's equation. It has traveling wave solutions of all speeds c ) 2. Gazdag and

Canosa [1) present a numerical solution of Fisher's equation using boundary conditions

analogous to (1.4). AS predicted by the theory, their solution always evolved to the

traveling wave of minimum speed. Here we present calculations using the boundary

"* conditions derived in section 2. The numerical solution is seen to evolve to the correct

traveling wave for a variety of choices of initial data.

We note that the method of deriving boundary conditions presented here can be applied

to other time dependent problems, including some problems of hyperbolic type. For other

examples the reader is referred to Gustafeson and Kreiss (2) and Hagstrom [5].

The authors thank Prof. J. DL Murray for bringing this problem to their attention.
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2. CONSTRUCTION OF THE BOUNDARY CONDITIONS

We now construct boundary conditions at the right boundary, x T+. (The

construction at the left will be analogous.) Only the linearized problem in the tail is

considered and a coordinate system moving to the right with speed c is assumed;

a) v(x,t) - u(x,t) - #+P x T +)

b) vt - flvxx + f2vx + cv x + f3v ;

(2.1)

c) v(x,O) = Uo(X) - *+

* d) lim v(x,t) - 0 ;
XrM

where the constants f1 are given by:

f (000

(2.2) f - C 1 I

;'S., ,2 f3 u ) ( 00'0+)

f gf C0,O,*0
3 aU

-S Following the general ideas presented by the authors in [6], two problems must be

solved, boundary conditions for the homogeneous problem, (2.1b,d) combined with zero

a,, initial data, must be found as well as a particular solution of (2.lb,d) which satisfies

a. (2.lc). The homogeneous problem is considered first.

Boundary Conditions for the Homogeneous Problem

We introduce the temporal Laplace transform:

-a-at

w(x,s) eStw(x,t)dt

* 0

If w is a solution of (2.1b,d) with zero initial data, then c satisfies:

f + Cf2 + c + Cf - )c 0 ;

lxx 2 x 3
(2.3)

lim W(x,s) - 0

x+e

p' Equation C2.3a) has the basic exponential solutions:

,'-a.

0~ -3-

po •#..•.°... . y.- t~t. :x---~.- .. ~4.
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(2.4)k (s~c)x

where k(sic) are given byt

(2.5) k 2 2 f c)P 2 1 C) + 4f I(a f f3 1'

For real part of a sufficiently large, k+ will have real part positive and k-. will

have real part negative. (Recall, f, ;o 1.) Hence, the admissible solution has exponent

k-. It satisfies:

(2.6) ( is) - kc(i~~ +'~

which can be rewrittenw

W (T is)

Ic (sic) - (+

Using the convolution formulas and the expression for the inverse transform of-I (se

e.g., Oberhettinger and Badii (8]), (2.7) can be expressed in the real variables:

1t a f 3-Q
2](t-p)~ I - a 2 (tP)Erfc(ctvt -P)]W ( .+,p)dp -W(T.+,t)

* 10 VT1(t - p)X

* . (2.8)

2Vf

U Particular Solution

We now find particular solutions, assuming that u0  * can be expressed as a finite

sum of exponential.:

N -a (x-T
uO(x) - =)d e a ,~ > 0, x ),

We note from Hegan's analysis [3] it is necessary in many cases that uO decay at

-167:least exponentially if traveling wave solutions are to be found. From (2.5), with

A -4-

% %' N*..~ *,q 16" %
A *** . . . .
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a -0, we see that traveling waves of speed c have exponential decay rates given by:

f2+c

f2 c 1 2 1/2
(2.9) g+(c) f- ± - (Cf + c) - 4f f

From (2.9) we see that given any exponent, -aj, there exists a unique speed cj such

that:

(2.10) -Uj = g_(cj) or -a] = g+(cj)

It is given by:

(2.11) cj + fl - f

Hence, each exponential can he associated with a unique traveling wave solution, from

which a particular solution can be found:

N a T -4 (x-(c.-c)t)

(2.12) vp(x,t) = 1 dje +e J 3

Combining (2.8) and (2.12) yields the following linearized boundary condition for u

at x - T+:

t (f -a2 1(-)2N a(c_)
14 .%" J' "/f ; ](t'p) [ 1 e a(t-p) Erfc(ait-p)](Ux(.)+ ) adde 

j
dp0 /I (ctc-p d

" (2.13) N ae (ccc)t/i-tp j1+t)de

. '.= u1T,,t) - + - di
+ : jil

where
f" f2 + c

a ) a - -
(2.14)1/f

%. N -a (x-T )

b) u0 (x) = *+ die , x )
J.1

Conditions at the Left Boundary

A similar boundary condition can be derived at the left boundary, x= T_. In

tranaform variables, a solution to the linearized, homogeneous problem on (-m,T] must

4..- -5-
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satisfy:
(.5)x is) s-X - - U(T ;S)

) + (sic)

where
-(f 2+ C) I 21/(2.16) i 2 + + 2) + 4 (

2i 2f 1  2 c) + 4f1 1- f 3]

1

We now have:

f ) (0,0,4) ;

(2.17) f2 3(U) (0,0,0*)
x

3 -, (0,,) .
3u '

The inverse transform of (2.15) is given by:

E t -- 2t-P -2

i • [3 + ;eC1 (t'P) Erfc(-;---- p)]x( _,p)dp - w(T,t) ;0 4 t-p)

2/f

To find a particular solution we assume that

: a (x-r )

Uo(X) - 4- e " a > 0, x 4 T
J-=1

Each exponent, Mi, can be uniquely associated with a linear traveling wave of speed cj

through equation (2.16) (with s 0):

101 (2.19) f -2 f -
j 2 1lj-M

-6-
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leading to the particular solution:

, M -a T_ a.(x+(c-c )t)

. (2.20) V -(xt) + e

Combining (2.20) with (2.18) yields a linear boundary condition at T_, analogous to

(2.13);

_;]t
tf' I + ..2tPrc M-c~pf _a e i Erc-vtp)](u Cr (Tp) -j Q .d.e )dp

0 VW(t-p) j-1

(2.21)
" a (c-c.)t. . " "~ u(T ,t) - _ - de J

]  
"!

where

f 2 c-'.''a ) a = -

(2.22) 2

' ".:'74 a (x-t )

b) uO() = + _ dIe , x <
j=1

3. Application to Fisher's Equation

We now apply the results of preceding section to Fisher's equation:

a) ut Uxx + u(1- u), x e(- ,), t ) 0

(3.1) b) lim u(x,t) = 0, lim u(x,t) - I
x+M x+-

c) u(x,O) = uO(x)

Problem (3.1) has arisen as a model of the propagation of an advantageous gene. For a

discusslon of this application see, for example, Moran [7]. It is a special case of (1.1)

and various statements concerning the behavior of its solution are consequences of Hagan's

(31 general analysis:

(i) There exist traveling wave solutions of all wavespeeds c ) 2.

-7-
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(ii) All positive initial data, uo(x), decaying at least exponentially as x -

evolves to a unique traveling wave.

(iii) If Uo(x) e as x + then the solution evolves to a wave of speed

c(O) given by:

(3.2) c(S) -

The linearized boundary conditions, (2.13) and (2.21), are easily specialized to this

problem. As in section 2, we introduce a coordinate system moving to the right with

speed c and choose T+ and T- as our artificial boundary locations. We assume t

u0 (x) can be represented as a finite sum of exponentials in the tails:

N -O.lx-T+

uo0(x) I d e , X T+

(3.3)

M ;.(x-T
uo(x) ) .d 3 - + 1, x T

The boundary conditions we impose are:

2 2
41 c N (1uQ-u.c)p

a)"e f )(t-p)[ , 2- e ( rfce /t-p)](Ux(T+,p) +#1 a ad e  dp
0 /(t-p) j-1

2
N (1+0 2-ajc)t

- u(T ,t) - I d e j

(3.4)

2 2t 1 -)tP -(t-p) M (;+; .c-l)p
t 4(+~~tp 1 c 4-( rc-~~hIu t, V .d.e )db) e e + e3rfc(- -)]3u (T P) -d.o '-e_ -p)

N 2 2 c-1

-2i

M (a +a jc- 1)t
-u(T.,t)- ! e

J.1

-8-
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We note that, by (3.3), the true solution should evolve to a wave of speed c(O) given by

(3.2) where

(3.5) 
8 : min .j .IJ

In certain circumstances the particular terms in (3.4a) have a large exponential growth in

time. As this could be a source of error in a numerical computation, the integrals

involving them were done exactly. This allows us to rewrite the right boundary condition:

2 2t (-
e" 4 1 c e4  Erfc(jS /t-) ]U(cr+,pidp0 V;(t-p) 2

(3.4a')

N
= u(T+,t) + ) fjlt)+j

where

2
k +2-- 1 2 k.t

fj(t)=l d2c e t Erfc~r-2) + 4 - J E fc + k.-1t +2(1-k .) (1 k 4

II

0j a + 2-+ k.j

k 2.+i a

(3.6) hj(t)=

c2
-2 4 -- I e k- I tka.t 2

j 2- + k.

2

We note that (3.4a') explicitly contains the different evolution of initial data with large

and small decay rates.

Presented below are the results of some numerical computations of solutions of (3.1)

using the boundary conditions (3.4a',b). A uniform grid was introduced and spatial

derivatives were replaced by centered finite differences. The method was implicit in time

and stable for the ratio of the time step to the grid size sufficiently small. At each

step a nonlinear system of equations was solved using Newton's method with an explicit step

-9-
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taken to generate the initial guess. The boundaries were located midway between gridpoints

and the integrals there were approximated by the trapezoid rule (away from the

singularity). For all cases described below the grid ranged between -12 and 12 and

contained 171 points. The time step in .025, well within the stable region in all cases.

Initial conditions were generated in the following ways expansions in the tail, (3.3),

were input and smoothly connected (two continuous derivatives) by a combination of

polynomial and exponential functions. The computations shown were performed on a

VAX 11/780 at the University of Wisconsin at Madison, though others were done on the

IBM 4341 of the Applied Mathematics Department at the California Institute of Technology.

Figure I shows the evolution, in a coordinate system moving with speed 4, of initial

data which decays, at both tn, at a rate compatible with a wave of speed 4. The initial

data and solutions at intervals of 25 time steps are displayed. A steady state is reached

which must be moving with speed 4. Figure 2 contains the final state (solid line) of

Figure 1. This is the solution at t - 6.875. Plotted with it is a wave of speed 4 found

by a finite difference solution of the relevant steady problem. The agreement between the

two solutions is seen to be excellent.

C.- 41.000000
1.2 F I I I I I I1

1.0

.0.8

.. 12 5 8 -4 0 4 8 12
X- CT,F Figure I

. . . 10 .

... .. .. .. -. ..



C=4
1.2 L,! ! .

1.0

| 0.8

,%,-. 0.6

"; 0.4

0.2
-" "0.0

,.-12 --8 -4 0 4 8 12

x
* - Figure 2

We note that the boundary condition,

(3.7) U(T+,t) = constant,

leads to good results when the speed of the coordinate system is the same as the speed of

the final state. For a more complicated problem, however, this might not be known in

advauce. Indeed, it might the goal of the computation to determine it. As shown in Figure

3, our conditions avoid this difficulty. This is the computed evolution in a coordiante

system moving with speed 3 of the same initial data used to generate Figure 1. The wave is

seen to move to the right and, in fact, moves with relative speed 1. This is confirmed in

Figure 4, a comparison of the solution at t = 6.875 (solid line) and the wave of speed 4

of Figure 2 translated to the right a distance of 6.875. We believe the small error at the

right boundary is due to the use of linearized boundary conditions.

Figure 5 displays the computed evolution of initial data with two decay rates in the

right tail: one compatible with a wave of speed 4,the other compatible with a wave of

speed 3. Here, the speed 4 part decayed at the large rate while the speed 3 part decayed

at the slow rate. As predicted by the theory, a speed 3 wave is eventually reached.

-11-
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C-- 3.000000
1.2

1.0

0.4-

S 0.2-

0.01 L
--12 --6 --4 0 4 5 12

X--CT

Figure 3

12 C=4

4 0.28

0.0 L~
-12 -- 8 --4 0 4 5 12

x
Figure 4



C= 3.000000

1.04

0.4-

0.2-

X- CT
Figure 5

We note that, an it is the initial data in the right tail which determines the

vavespeed, it is the right boundary condition which is important. Various choices for the

*left boundary condition, for example u -constant and ux 0, were tried and led to

good Ieuls
In sumary, we have shown that our boundary conditions consistently lead to correct

*long tim results while other simpler conditions do not. We hope that their generalization

to more complicated problems, where the final state is not known a priori, will also giveI

reliable results. It should be noted, however, that this has not been proved even in the

simple case described here.

4.%
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ABSTRACT (cont.)

asymptotic state often depends on the behavior of the initial data at

infinity. This causes difficulties for the numerical simulation of the long

time evolution of such problems. In particular, if an artificial boundary is

introduced, the boundary condition imposed there must depend on the initial

data in the discarded region. In this work we derive such boundary

conditions, based on the Laplace transform solution of the linearized problems

at ±in. We illustrate their utility by presenting a numerical solution of

Fisher's equation, a nonlinear parabolic equation with traveling wave

solutions which has been proposed as a model in genetics.
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